

Outline

- What is UHPC (Ultra High Performance Concrete)
 - Definition / Characteristics
 - Long term Durability Testing
- Project Review
 - Hodder Avenue Underpass Thunder Bay, Ontario
 - UHPC Pier Cap, Columns and Field Cast Joints
 - CN Rail Bridge Montreal, QC
 - Column Jacketing repair
 - Perez Art Museum of Miami Miami, Florida
 - Window Mullions
 - The Atrium- Victoria, BC
 - Curved and Flat thin panels

Defining UHPC

"Materials with a cement matrix & characteristic compressive strength in excess of 20,000 psi, possibly attaining 36,000 psi -- containing fibers in order to achieve ductile behavior under tension."

- SETRA (French Society of civil Engineers)

(ACI is currently developing a working definition)

Typical Concrete

Compressive Strength

2,000 to 5,000 psi

Flexural Strength

~ 570 psi

Direct Tension

~ 450 psi

Ductility

None

Abrasion Resistance

Weak

Impermeability

Steady carbonation and penetration of chlorides.

UHPC

Compressive Strength

25,000 to 30,000 psi

Flexural Strength

up to 6,000 psi

Direct Tension

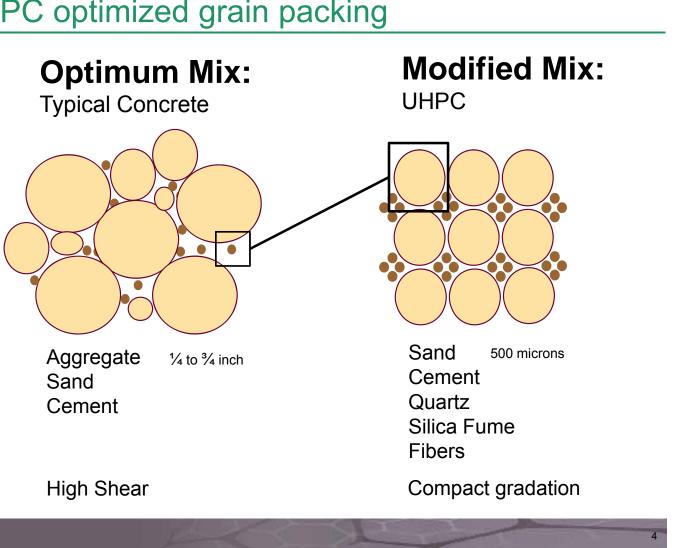
up to 1,450 psi

Ductility

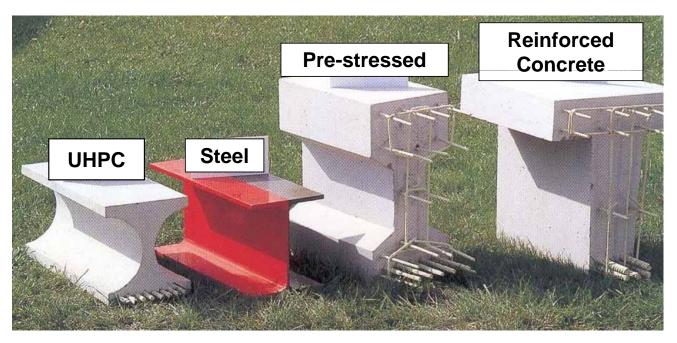
Greater capacity to deform and support flexural and tensile loads, even after initial cracking.

Abrasion Resistance

Similar to natural rock

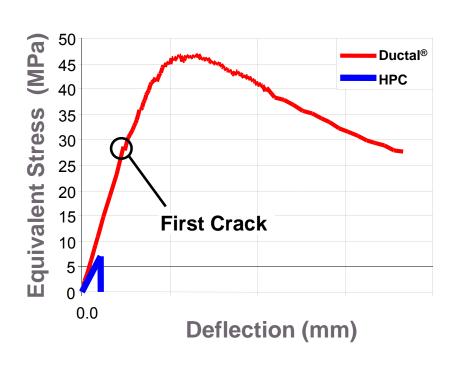

Impermeability

Almost no carbonation or penetration of chlorides.


- 3

Ultra-High Strength

Beams of Equal Load Carrying Capacity



Mass (weight) of Beams

kg/lineal meter	140	112	467	530
lbs/lineal ft.	94	75	313	355

[®]National Ready Mixed Concrete Association

Ductility

2,000 lb car on a 1 ¼ -inch sheet of Ductal®

Durability

The Goal - Long Term Serviceability and Maintenance-Free Structures

Concrete Durability depended on these physical parameters:

- Porosity,
- Permeability,
- Diffusivity

Durability performance assessments have been ongoing since 1996 and comparisons to HPC and Ordinary Concrete have been made.

Durability

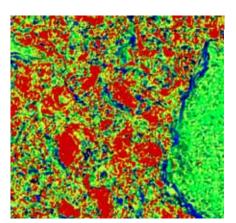
Treat Island, Maine, USA

U.S Army Corp. of Engineers Long-term Exposure Site

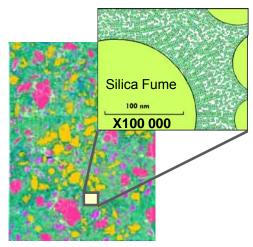
Samples of UHPC have been Installed at this site since 1996

EXPOSURE data given since: 2013

- •1590 freeze/thaw cycles,
- •11950 wet/dry cycles in saturated sea water
- •High abrasion from waves and ice
- •No sign of corrosion on rebar with only 10mm (3/8") cover


Visual inspections are routinely done Physical inspections are done at 5, 15 & 25 Years

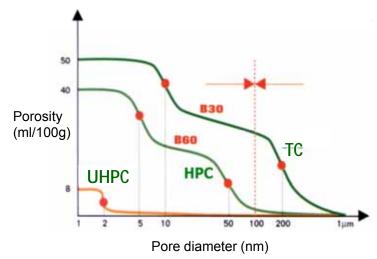
Porosity


Typical Concrete

Typical Concrete X1000

- •Connected Capillary Pores
- •200 Nanometers

UHPC


UHPC X 1000

- •No Capillary Pores
- •Disconnected Nanopores
- •Pore Size 2 Nanometers

Permeability

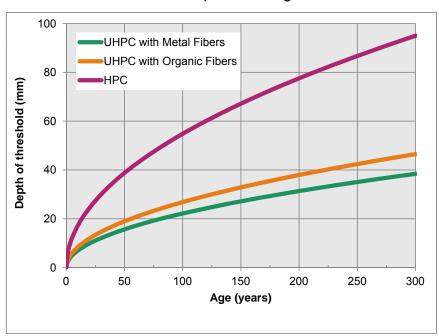
Pore Size Determines Permeability and Diffusivity

Mercury Porometry

Nitrous Oxide Gas Permiability

Concrete :	UHPC		НРС	ос
Curing mode:	20°C	20°C (2d)	20°C	20°C
	(28d)	+90°C (2d)	(28d)	(28d)
W/C Ratio:	0.20	0.20	0.35	0.5

Permeability				
N ₂ , O ₂ (no drying)	1.0 E ⁻²²	1.0 E ⁻²²	1.0 E ⁻¹⁹	2.0 E ⁻¹⁸
N_2, O_2	<1	<1	5.0	3.5
(severe drying)	E ⁻²⁰	E ⁻²⁰	E ⁻¹⁸	E ⁻¹⁷

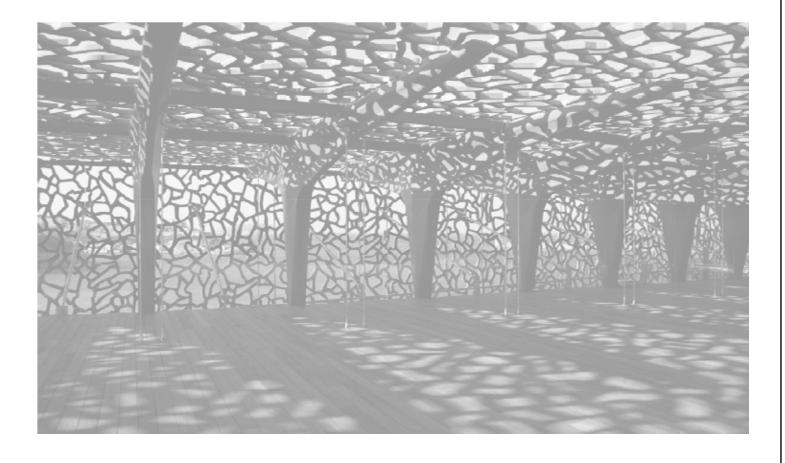

UHPC is not permeable to fluids or Oxygen Molecules because of disconnected* nanopores that also have sharp bottle-neck geometries

UHPC is less permeable than Granite

^{*} Electrical Conductivity Test have been conducted to verify pour disconnection

Diffusitvity

Chloride Ion Penetration Depth following Frick's Law


Resistance to chemical aggression and leaching are the result of the diffusivity Value for UHPC.

UHPC Diffusivity is 100 X better than HPC (D = $2.E^{-12}$ m2/s)

3 years are required for a tritium ion to pass through a 3 mm thick UHPC slice. From the diffusivity coefficient value, we can estimate a duration of 800 years for an ion to pass through a 50 mm thick UHPC layer!

Only 18 years is given as the estimate for the tritium ion to progress to the same distance (50 mm) in HPC

Project Review

Thunderbay, Ontario

Built: 2012

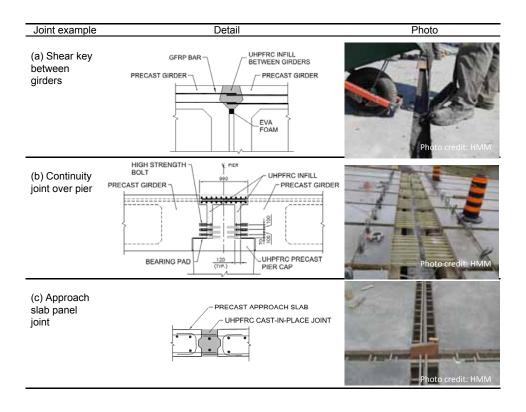
UHPC Use: Pier Cap, Shell around Columns and Field Cast Joints

(New Construction)

Further Information:

Construction Canada (January 2013 Vol. 55 No. 1)

Building a Better Bridge with UHPC Concrete Solutions in Nothern Ontario By Raymond Krisciunas, Peter Seibert, Philip D. Murray


Field Cast Joints

- Reduction of joint width due to development length of UHPC
- Durability and Strength characteristics make it the strongest part of the bridge
- Can be ground smooth, no need for asphalt over lay

http://www.iowadot.gov/bridge/abc_ppt_2014.htm

Papers and related Research

Table 1. Examples of UHPFRC joints in Hodder Avenue Underpass

Pier Column Shells

- 8.35 M (27 ft)
- Leave in place mold
- •Protective exterior to salt and ice

CN Rail Bridge

Montreal, QC Built: Oct 2013

UHPC Use: Column Jacketing (Repair / Rehabilitation)

20 Year Maintenance Cycle Increased to an estimated 40 Years

Further Information:

Rehabilitation of Bridge Piers Utilizing UHPC — by Gaston Doiron and Vic Perry Presented at the 9th International Conference on Short and medium Span Bridges

CN Rail Bridge

3 Types of Repair method

- Spray UHPC (Naperville Example)
- Precast UHPC barriers (Japan Example)
- Cast in place "Jacketing" CN Rail example shown above

CN Rail Bridge

This column impedes into an access ramp with already narrow lanes. UHPC was utilized because of the ability to have a thin jacketing application with the greatest resistance to salt, de-icing compounds and freeze thaw.

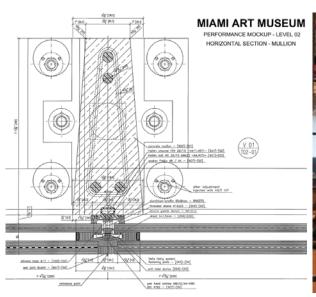
- 100 mm thickness
- Done in two pours
- UHPC slurry mix was used to plug the attachment point holes.

Perez Art Museum of Miami

Miami, US

Designer: Herzorg & de Meuron Built: Under Construction (2013)

Dimensions: mullions 12.7" deep x 16' tall tapering from 4.4" to 2.7"


Fabricator: Coreslab

20

Perez Art Museum of Miami

Full Mock up testing at ATI

- Water Leakage
- Air Leakage
- Impact Test

Expected to Perform well in the High Salt Environment of

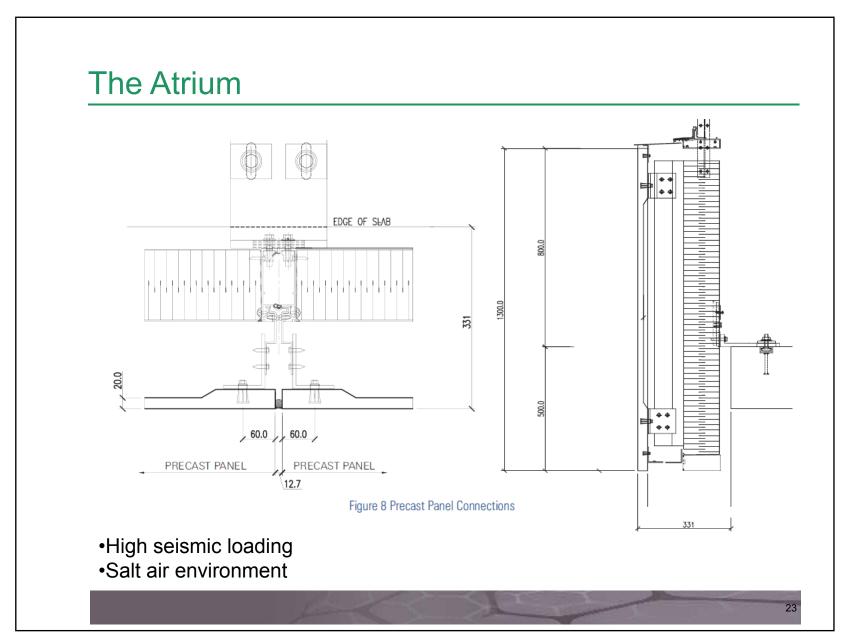
Biscayne Bay

The Atrium

Victoria, Canada

Designer: Franc D'Ambrosio

Built: 2010


Dimensions: panels 1.3m x 1.3m x 1.7cm

Fabricator: Lafarge Precast

2011 PCI Design Award

